
		
			[image:]
		

		
			
				Fine-grained Authorization:

			

		

		
			
				Concepts and Best Practices

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				Introduction to fine-grained authorizationThe difference between Authentication and AuthorizationAccess control in the age of the cloudRole-based access control (RBAC)Multi-tenant RBACExample RBAC policyMulti-tenant RBAC policyPros and cons of RBACRBAC ResourcesAttribute-based access control (ABAC)Example ABAC policyPros and cons of ABACABAC resourcesRelationship-based access control (ReBAC)Custom tailored access controlExample ReBAC policyPros and cons of ReBACReBAC resourcesCombining modelsConclusion

			

		

		
			
				123456788910111213131415161618

			

		

		
			
				Fine-grained Authorization: concepts and best practices

			

		

		
			
				[image:]
			

		
	
		
			[image:]
		

		
			[image:]
		

		
			
				Introduction to fine-grained authorization

			

		

		
			
				Over the past few years, industry leaders including Google, Intuit, Airbnb, Netflix, and Carta have

				written about the lessons they have learned standardizing authorization across their applications and services. While the details are different, these systems share five architectural patterns. We call these

				the “5 Laws of Authorization:”

			

		

		
			
				This ebook covers everything you need to know about fine-grained authorization.

			

		

		
			
				1. Unified authorization service with a distributed systems architecture

			

		

		
			
				2. Real-time access checks

			

		

		
			
				3. Fine-grained authorization

			

		

		
			
				4. Policy-based access management

			

		

		
			
				5. Centralized decision logs

			

		

		
			
				Fine-grained authorization has recently gained popularity due to a combination of factors. These factors include cloud and SaaS adoption in the enterprise, the emergence of microservices-based architectures, and the papers published by Google and other unicorns describing the fine-grained access control systems they have built.

			

		

		
			
				Despite the increasing awareness, as an industry we have yet to solve the problem of fine-grained access control in the age of SaaS and cloud. There are no standards for cloud-native authorization. And as a result, every application is forced to reinvent the wheel and build its own authorization system. This issue is only exacerbated in larger organizations with many applications and services, each authorizing differently.

			

		

		
			
				So what is fine-grained authorization? It is a mechanism that allows you to define rules that govern what an authenticated user can access, often down to individual resources. It allows you to define granular restrictions on what users can see and do once logged into your application.

			

		

		
			
				A mechanism that allows you to define granular restrictions on what users can see and do once logged into your application

			

		

		
			
				What is Fine-grained Access Control?

			

		

		
			
				[image:]
			

		
		
			
				1

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				The difference between Authentication and Authorization

			

		

		
			
				Is the user who they claim to be?

			

		

		
			
				What can this authentitated user see and do?

			

		

		
			
				Authentication

			

		

		
			
				Authorization

			

		

		
			
				Google Drive is a great example: you can share individual files, folders or collections of

				folders with other users and determine what permissions they have (view/comment/edit).You can tie permissions to specific resources (folders and files), and these permissions can be inherited in a hierarchy. When you give a user permissions to a folder, they are also

				granted access to every file in that folder.

			

		

		
			
				Slack, on the other hand, is an example of a system that relies on coarse-grained roles. Full members have access to all non-private channels; you can’t pick and choose which public channels they can access. You cannot tie permissions to specific resources.

			

		

		
			
				The most common misconception about authorization is that it is part of authentication. People tend to lump these two concepts together as “auth,” but they are two distinct processes.

			

		

		
			
				Authentication is the process of figuring out whether a user is who they claim to be. In the past, this was accomplished via user IDs and passwords. These days it’s much more common to encounter single sign-on, passwordless systems, or multi-factor authentication. But these are just new solutions to the same problem.

			

		

		
			
				In 2023, authentication is largely a solved problem. Over the course of the last 15 years, we’ve developed industry standards such as OAuth2, OpenID Connect, SAML, and JWT. We also have cloud identity providers such as AWS Cognito and Azure Active Directory, and pure-play identity services like Auth0, Okta, and PingID. So today, no one needs to build a log-in system unless they want to.

			

		

		
			
				Authorization is the process of deciding what an authenticated user can see and do. It is downstream from authentication, and unlike authentication, it is a problem that is far from solved.

			

		

		
			
				>>For more about the differences between authentication and authorization go here.

			

		

		
			
				Now that we are clear on what fine-grained access control is, we can dive deeper into the subject. We’ll start with the #1 misconception about authorization. Then, we will discuss the technological landscape that brought us to where we are today.

			

		

		
			
				[image:]
			

		
		
			
				2

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				Access control in the age of the cloud

			

		

		
			
				Before the cloud, authorization wasn’t as much of a problem. Your operating system included a directory, like LDAP or Active Directory, that stored mappings between users and groups.

				Business applications would use these groups to implement role-based access control (RBAC).

			

		

		
			
				Since those days, there have been three transitions that have affected the world of software in general and authorization in particular:

			

		

		
			
				The transition to SaaS with the rise of the cloud. Authentication moved to the cloud successfully, but access control has not. This is due to the fact that we don’t have a global directory in the cloud that stores these mappings between users and groups. Instead, every application builds its own access control.

				The rise of microservices adds to that. Back when we had monoliths, authorization happened at one time and in one place in the code. Today, we have multiple microservices, and each microservice has to do its own access control. We also have to think about authorizing interactions between microservices, so that only the right interaction patterns are allowed.

				The move from perimeter-based security to zero trust. With zero trust, the responsibility for security moved away from the environment and into the application. It is on the application to set up a mechanism to deny by default, so users can only access what they need to and nothing more.

			

		

		
			
				So this is where we are today: everything is in the cloud, everything is a microservice, and zero trust is a must. Access control is not a nice to have, but a need to do business. And every application, microservice, and API needs to build its own solution.

			

		

		
			
				Authorization rules are

				expressed in code that is

				stored and version

				separately from

				application code

			

		

		
			
				Policy-as-code

			

		

		
			
				Policy-as-data

			

		

		
			
				Authorization policy is

				based on underlying data:

				user context, resource

				context, or both

			

		

		
			
				[image:]
			

		
		
			
				3

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				Policy-as-code. Authorization policy is treated as code that is extracted from the application code and stored and versioned separately.In the context of the cloud-native movement, the Open Policy Agent (OPA) project has become the de-facto standard for expressing policy as code. OPA policies are written in a Datalog-inspired language called Rego, and can be stored and versioned just like configuration or infrastructure code. Policies can be as simple or complex as the business scenario calls for. OPA is a great building block and is mostly used for attribute-based access control scenarios (ABAC).

				Policy-as-data. Ultimately, every authorization decision is based on rules and data, which consists of user context, resource context, or both. If the rules are fixed, the authorization policy can be implemented in terms of subjects (users), resources, and their relationships.Google’s Zanzibar is perhaps the most well known implementation of policy-as-data. Zanzibar is the unified authorization system for Drive, Cloud, Calendar, Gmail, YouTube, and other popular Google clients. It uses a relationship graph to determine access based on relations between subjects and objects in the system. This authorization model is known as relationship-based access control (ReBAC)

			

		

		
			
				Two ecosystems are emerging around cloud-native authorization:

			

		

		
			
				Applications tend to evolve their authorization model over time, as they scale and security policies gain complexity. In the coming chapters we explore the natural progression of these models, from the easiest to implement to the most fine-grained.

			

		

		
			
				Role-based access control (RBAC)

			

		

		
			
				[image:]
			

		
		
			
				4

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				Every application requires some sort of access control to secure protected resources. The simplest model is one that aggregates permissions into coarse-grained roles (e.g. “admin,” “editor,” or “viewer”) and assigns them to users. This is role-based access control (RBAC).

				RBAC is a popular authorization model, used by the likes of Slack, MailChimp, and Bill.com. It’s simple to set up and straightforward to reason about. Grouping permissions into roles and users into groups limits the number of rules you need to define in order to grant users the appropriate permissions.

				RBAC allows organizations to answer questions like “Can Summer push to production, if that permission is reserved for `admins`?” If Summer has the “admin” role the query will be answered positively and access will be granted.

				RBAC systems expect the roles assigned to users to have the relevant permission. If they do, access is granted. This means that you need to map roles to permissions in order for RBAC systems to be able to authorize.

				While simple and straightforward, RBAC doesn’t scale. As new scenarios come up, the easiest solution is, more often than not, to create new roles. As more and more roles are created to provide different permission sets, you experience “role explosion.”

				Let’s say you hire a new type of employee: a Salesforce admin. You want to give this employee the ability to add and remove users and records from the CRM, including bulk imports and deletions. But you don’t want them to be able to access revenue information or personal identifiable information.

				The quickest solution is to create a new, very specific role with only the necessary permissions. And that happens again and again until the number of roles is simply unmanageable. This situation also tends to lead to bizarre groupings of permissions, which makes it hard to understand how permissions are assigned across your users.

			

		

		
			
				Multi-tenant RBAC

			

		

		
			
				[image:]
			

		
		
			
				5

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				RBAC is simple. Permissions are associated with roles and users are assigned to roles. An “editor” can edit every resource and an “admin” can act on or delete any resource.

				Things get interesting when you look at multi-tenant apps, such as Github and Salesforce. At a minimum, multi-tenant SaaS applications must ensure that user roles are scoped to a particular tenant, or set of tenants. A user should only be able to access the private repos under their organization, for example.

				This may seem trivial, but it is the difference between coarse and fine-grained access controls. Multi-tenant RBAC is hierarchical and thus offers more granularity than RBAC. In a simple RBAC scenario, an “admin” will have access to every resource in the system. In a multi-tenant scenario, an “admin” might have access to every resource within a specific tenant or subset of tenants, but not all tenants. A “system admin,” on the other hand, will have access to every resource in every tenant. This differentiation is not possible with simple RBAC.

			

		

		
			
				RBAC systems expect roles to have the relevant permissions, so you need to define the roles and map them to permissions.

				These role-to-permission mappings don’t change often and can be captured in a static mapping. When using the Open Policy Agent (OPA) for defining an authorization policy, these mappings can be placed in a data.json file and packaged up with the policy.

				An RBAC policy can then check whether a user has a role in order to authorize the operation:

			

		

		
			
				A “system admin” will have access to every resource in every tenant.A “admin” might only have access to resources in one or a set of tenants.

			

		

		
			
				allowed_roles := [“viewer”, “editor”, “admin”]

				allowed {

				 # allow if the user role is one of the allowed roles

				 input.user.properties.roles[_] = allowed_roles[_]

				}

			

		

		
			
				Multi-tenant RBAC is hierarchical.

			

		

		
			
				Example RBAC policy

			

		

		
			
				[image:]
			

		
		
			
				6

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				Multi-tenant RBAC requires that we check whether a user has a role on a specific resource (in this case, a tenant). For this scenario, we need to write much more involved Rego, which traverses a data structure that captures the relationship between users, roles, and specific tenants.

				Alternatively, we can treat multi-tenant RBAC as a simple example of a relationship-based access control model (more on that later!) We can then use a system like Topaz or Aserto with built-in functions that can evaluate relationships between subjects and objects.

				For example, a rule that needs to evaluate tenant membership can simply use the

				ds.check_relation built-in:

			

		

		
			
				This policy restricts access to tenant resources to members of that tenant. The “member” relation with the tenant acts like a role that maps to the can-view permission. This type of policy is what Salesforce, for example, uses to ensure that only users that you added to your account can access the information there. You can create more roles and map them to permission sets, like in standard RBAC.

				RBAC policies are quick and easy to set up, but lack the flexibility required for fine-grained access control. We defined an “editor” role in the first example. Users in that role have can-view and can-edit permissions over every resource. In the second example, we have a policy that limits access to tenant resources to “members” of that tenant. A good first step, but not enough, because “members” can access every resource in that tenant. These types of broad permissions are not something most businesses can live with.

			

		

		
			
				allowed {

				 ds.check_relation({

				 “object”: {

				 “key”: input.resource.tenant,

				 “type”: “tenant”

				 },

				 “relation”: {

				 “object_type”: “tenant”,

				 “name” : “member”

				 },

				 “subject”: {“id”: input.user.id}

				 })

				}

			

		

		
			
				Multi-tenant RBAC policy

			

		

		
			
				[image:]
			

		
		
			
				7

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				Pros and cons of RBAC

			

		

		
			
				RBAC Resources

			

		

		
			
				RBAC is easy to set up, reason about, and audit. But it does not scale. As you create more and more roles, you bear the risk of “role explosion.” At that point, it becomes increasingly difficult to reason about any authorization decision. This ultimately renders the system ineffective.

				So should you use RBAC? It depends. RBAC is a great model if you have a small set of predefined permission sets. It works best when you also have a static mapping between users, roles, and resources.

				But once finer-grained controls are required, or the ability to manage access to resources in different hierarchies, RBAC is no longer enough. Attribute-based access control and relationship-based access controls are potential solutions. Both allow organizations to have finer-grained controls, enforce the principle of least privilege, and improve security posture. We dive into both models in the chapters to come.

			

		

		
			
				Here are a few resources to help you get started with role-based access control:

			

		

		
			
				A developer’s guide to RBAC and ABACRBAC best practicesBuilding RBAC in NodeBuilding RBAC in GoBuilding RBAC in Python

			

		

		
			
				Simple implementation

			

		

		
			
				Uses coarse-grained roles

			

		

		
			
				Policy is easy to reason about, modify and audit

			

		

		
			
				Static roles add to administration complexity

			

		

		
			
				Can be suitable for small, simple applications

			

		

		
			
				Role explosion

			

		

		
			
				Pros

			

		

		
			
				Cons

			

		

		
			
				[image:]
			

		
		
			
				8

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				Attribute-based access control (ABAC)

			

		

		
			
				Attribute-based access control (ABAC) is not new. Many enterprises have implemented ABAC models due to the ease of restricting access based on user attributes, resource attributes, or environmental attributes, such as network, location, or device. Denying access to protected resources over public networks or from certain locations are common use cases. Regional differences in service levels or compliance requirements, such as GDPR, are common examples.

				ABAC policies use dynamic characteristics called “attributes.” These attributes can be on the user, resource, or even environment level. Access is granted or denied based on one or more attributes.

			

		

		
			
				user name, role, team, seniority, project, etc.

			

		

		
			
				resource owner, creation date, file name, folder, etc.

			

		

		
			
				time of access, location of the requester, network information, device, etc.

			

		

		
			
				User attributes

			

		

		
			
				Resource attributes

			

		

		
			
				Environmental attributes

			

		

		
			
				[image:]
			

		
		
			
				9

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				A simple ABAC policy could restrict viewing customer tickets to users that are assigned to those customers. A more sophisticated policy might also require the user to connect over VPN during the workday to gain access.

				As seen in the examples above, ABAC allows for fine-grained access control. Rather than associating permissions with users as one does with RBAC, ABAC relies on dynamic attributes that are easy to update. As a result, ABAC systems tend to be easier to maintain as you scale.

				When an employee changes departments all you need to do is to update that user’s department attribute to provide them with access to what they need and revoke access to what they no longer need. With RBAC, you’d need to update the user’s role across systems or create a new role to provide the right permissions. The former means manual updates, while the latter will lead to “role explosion.” ABAC avoids this because the policy evaluates the attributes, instead of statically-assigned roles.

			

		

		
			
				ABAC provides you with the flexibility to secure access to resources based on nuanced criteria. It lets you answer questions such as “Can Rick push to production if Rick is in the Operations department and the cluster he’s pushing to is in North America?” The policy computes an allow/deny decision based on (user, resource, environment) inputs. If Rick has the required attributes, access will be granted. If he does not, access will be denied.

			

		

		
			
				ABAC is a way of determining access to data based on attributes. A simple example could be “all users can read public data.” You can also use an ABAC policy to enforce more complex behavior, such as “Support agents can only access tickets of customers they are assigned to, during workdays.”

				Here’s an example of what this policy could look like:

			

		

		
			
				>> For more about the difference between ABAC and RBAC, go here.

			

		

		
			
				workdays := [“Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”]

				allowed {

				 ns := time.now_ns()

				 day := time.weekday(ns)

				 day == workdays[_]

				 input.user.department == “Support”

				 input.user.project == “ACME org”

				}

			

		

		
			
				Example ABAC policy

			

		

		
			
				[image:]
			

		
		
			
				10

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				When an access request comes in, we compare the current day to the permissible days. We also compare the user’s department and project attributes to a list of allowed departments and projects.

				If the user is trying to close a support ticket for customer “ACME” they can do so only if the following is true:

			

		

		
			
				If the answers to all three are positive, access will be granted. But if the user does not have the “Support” or “ACME org” attributes, or is trying to access the resource outside of the permissible times, access will be denied.

			

		

		
			
				Pros and cons of ABAC

			

		

		
			
				Easy to scale

			

		

		
			
				Complex to administrate

			

		

		
			
				Elegant solution for user, network & location criteria

			

		

		
			
				Setup takes longer and Rego has a learning curve

			

		

		
			
				Decision logs

			

		

		
			
				Requires more expertise

			

		

		
			
				Pros

			

		

		
			
				Cons

			

		

		
			
				They have the “Support” department attribute to indicate that they are a support agent

				They have the “ACME org” project attribute. This attribute indicates that the user is assigned to that customer.

				They are requesting access to ACME’s support tickets during a workday

			

		

		
			
				[image:]
			

		
		
			
				11

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				ABAC resources

			

		

		
			
				The attributes-based approach brings a dynamic nature to authorization. This makes ABAC an easier model to scale. But it also adds complexity. You must address all the potential values of those attributes, or risk unanticipated and potentially unwanted behavior. Also, writing access policies in a logic language like Rego involves a learning curve. It’s a powerful language, but with power comes complexity.

				These are the reasons that initial implementations of ABAC are more time-consuming than those of other models. You need to design an authorization model and learn how to put it in place in logic. Maintaining ABAC systems correctly also tends to require more expertise.

				ABAC is a powerful and flexible model that allows you to answer questions like ”Can Rick push to production?”

				But, if you are looking to answer questions like “Who has the permissions to push to production?” you’ll have to look elsewhere. This type of question is open-ended and not a straightforward use-case for ABAC, which relies on clear inputs to verify against.

				This question is easily answered with relationship-based access control (ReBAC). Because of the bi-directional nature of relationships, you can start with a subject and compute what objects are reachable through these relationships (“What does Rick have access to”). You can also start with an object and compute which subjects are reachable through relationships (“Who has access to this object”).

			

		

		
			
				Some resources to help you on your journey to adding attribute-based access control to your applications or APIs:

			

		

		
			
				A developer guide to upgrading from RBAC to ABACBuilding RBAC, ABAC, and ReBACGetting started with RegoABAC documentation

			

		

		
			
				>> For more about the difference between ABAC and ReBAC, go here.

			

		

		
			
				[image:]
			

		
		
			
				12

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				Custom tailored access control

			

		

		
			
				Relationship-based access control (ReBAC) is also not new. It is a fresh take on the access control list (ACL) paradigm of cascading access to each resource in a hierarchy, such as directories and files. ReBAC generalizes this model into a relationship graph between subjects and objects. Data ownership, parent-child relationships, groups, and hierarchies are all examples of these relationships.

				Social media is a great example of graph-based access controls. Users can control access to their information based on the relationship they have with the requestor. You can set up Facebook or LinkedIn to share your posts and media with first-degree contacts, while second-degree (or higher) connections can only access public information, like your name and bio.

				Google Zanzibar, the unified authorization system for YouTube, Gmail, Calendar, Drive and other Google clients, uses ReBAC. Zanzibar has brought new focus to ReBAC and has inspired many open-source projects. One implementation even lets you combine ReBAC with other authorization models like ABAC.

			

		

		
			
				The exciting thing about ReBAC is that it lets applications model their resource hierarchy, so that access control matches it. Every application has a resource hierarchy, or domain model. Most B2B apps have tenants or organizations at the top of their resource hierarchy. This is followed by an internal hierarchy of resources, such as teams, projects, lists, folders, and even individual items. With ReBAC, you can restrict access at any level of the hierarchy and apply the principle of least privilege using fine-grained access controls.

			

		

		
			
				
					
						Relationship-based access control (ReBAC)

					

				

			

		

		
			
				allowed {ds.check_relation({“sub_id”: input.user.id,“obj_id”: input.resource.team.id,“type”: “team”“relation”: “admin”})}

			

		

		
			
				[image:]
			

		
		
			
				13

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				Multi-tenant RBAC might come to mind. With this model, users are restricted to a tenant or set of tenants. But their roles provide them with permissions over every resource in that tenant/set of tenants. An “editor” can edit any resource. ReBAC allows organizations to further restrict access to resources, so that only relevant users can access the resources they need to perform their job and nothing more.

			

		

		
			
				>> For more about the differences between RBAC and ReBAC, go here.

			

		

		
			
				Example ReBAC policy

			

		

		
			
				ReBAC uses direct and indirect relationships between resources to determine access. Its graph-based nature allows you to define relationships, such as containment or management relationships. Let’s take a closer look at that.

				Most people are familiar with Google Drive, so we’ll use a document-sharing application as our example. We have a document-sharing application with a hierarchical structure between a set of folders and documents. The system is set up so that users can share individual documents or folders with others, who are granted can-view or can-edit permissions. We’re designing an authorization system that takes into account both management hierarchy and containment.

				The authorization policy will have two rules:

			

		

		
			
				A check_permission call to cover the normal case where a user shares files with another user. In this case, the user requesting access is explicitly granted can-view or can-edit permissions.

				A check_relation call to see if the user requesting access is the manager of the user who owns the file that is the target of the authorization. In this case, access isn’t granted explicitly, but based on an indirect relationship between entities.

			

		

		
			
				ReBAC lets you restrict access at any level of your resource hierarchy and apply the principle of last privilege.

			

		

		
			
				[image:]
			

		
		
			
				14

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				If either of these rules is true, the user gets access.

				Here’s an example of how we can specify the can-edit permission in a policy:

			

		

		
			
				The first rule is straightforward. It grants access to any user with can-edit permissions to that file, regardless of any other criteria. The second rule is where things get interesting. It uses ds.object to load the directory object representing the file being accessed and pulls up the owner_id property. The policy then checks if the acting user has the manager_of relation to the owner of the file. If they have that relation with the owner of the file, access will be granted.

			

		

		
			
				ReBAC uses a relationship graph to determine access. This allows developers to use criteria otherwise unavailable, or cumbersome to set up. Management relationships are a great example.

			

		

		
			
				Pros and cons of ReBAC

			

		

		
			
				allowed {

				 ds.check_permission({

				 “subject”: {“id”: input.user.id},

				 “permission”: “can-edit”,

				 “object”: {“key”: input.resource.file_id, “type”: “file”},

				 })

				}

				allowed {

				 file = ds.object({“key”: input.resource.file_id, “type”: “file”})

				

				 ds.check_relation({

				 “subject”: {“id”: input.user.id},

				 “relation”: {“name”: “manager_of”, “type”: “user”},

				 “object”: {“id”: file.properties.owner_id},

				 })

				}

			

		

		
			
				Flexible model allowing for resource-level access control

			

		

		
			
				Adds operational overhead as the app scales and every resource needs to be in both the application code and authorization

				database.

			

		

		
			
				Unique relation types, like parent-child or managerial relationships.

			

		

		
			
				Pros

			

		

		
			
				Cons

			

		

		
			
				[image:]
			

		
		
			
				15

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				ReBAC resources

			

		

		
			
				Combining models

			

		

		
			
				Many applications want to enable managers to perform actions on their reports. You could, for example, create a group that contains all the executives, map out their departments, and assign attributes. You would then explicitly manage the group, as you would with ABAC. Or you could construct a ReBAC policy to walk the organizational graph and determine whether a user is in that executive’s organization, in a fraction of the time and effort. This is also a more elegant solution.

				The relationship graph is quick and easy to traverse, but ReBAC has the potential to add operational overhead as your application scales. Things can get messy when every resource relationship needs to be stored in both your application database and authorization database.

			

		

		
			
				Sometimes the most elegant way to express authorization logic will be by combining access control models. An easy example could be when you want to enforce access to a subset of resources based on network or location. Another example would be when you want to use roles as fallbacks, so that “admins” get access to every resource, regardless of any other criteria.

				Thankfully, you are not married to one and only one authorization model. There are even services out there, like Topaz, that help you combine access control models.

				Let’s take a look at an example policy that combines RBAC, ABAC and ReBAC. Going back to our document-sharing application, we might want to further tighten access to files users do not own by limiting access to standard working hours.

				We can write a policy that enforces the following rules:

			

		

		
			
				Here are a couple resources to help you get up to speed with relationship-based access control:

			

		

		
			
				If a user is an “admin” they may edit any resource, regardless of any other condition.

			

		

		
			
				If a user has the can-edit permission to a resource, they may do so regardless of any other condition

			

		

		
			
				If a user has the manager_of relation with another user they can edit any file owned by that user during workdays

			

		

		
			
				A detailed account into how Drive does authorizationThis project lets you combine ReBAC with OPA policiesRBAC, ABAC and ReBAC example policiesReBAC documentation

			

		

		
			
				[image:]
			

		
		
			
				16

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				Here’s what the policy could look like:

			

		

		
			
				package example.rebac.edit.__fileSystemResource

				

				user = ds.object({

				 “key”: input.user.id,

				 “type”: “user”,

				})

				allowed {

				 input.user.roles == “admin”

				}

				allowed {

				 ds.check_permission({

				 “subject”: {“id”: input.user.id},

				 “permission”: “can-edit”,

				 “object”: {“key”: input.resource.file_id, “type”: “file”},

				 })

				}

				workdays := [“Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”]

				allowed {

				 ns := time.now_ns()

				 day := time.weekday(ns)

				 day == workdays[_]

				 file = ds.object({“key”: input.resource.file_id, “type”: “file”})

				 ds.check_relation({

				 “subject”: {“id”: input.user.id},

				 “relation”: {“name”: “manager_of”, “type”: “user”},

				 “object”: {“id”: file.properties.owner_id},

				 })

				 }

			

		

		
			
				[image:]
			

		
		
			
				17

			

		

	
		
			[image:]
		

		
			[image:]
		

		
			
				Conclusion

			

		

		
			
				Fine-grained access control is the new frontier of Identity and Access Management. But there are no standard protocols, frameworks or APIs to speak of. As a result, every application is forced to reinvent this wheel.

				We covered the technological changes that have brought us to where we are today and explored popular access control models.

				RBAC defines a set of roles, with static mappings to permissions, which can be associated with users. It is simple to set up and reason about. But RBAC doesn’t scale well, especially when finer-grained controls are required.

				ABAC uses dynamic attributes to determine access to resources. It allows for fine-grained control and easier maintenance as you scale. But it comes with a heavier investment to get up and running. It also requires more expertise to maintain than other models.

				ReBAC is an opinionated model that defines authorization rules in terms of relationships between subjects and objects, allowing for resource-level authorization. It lets developers model hierarchical relationships such as file/folder containment and management relationships. But ReBAC can add operational overhead as you scale.

				So which is better? The simple answer is “it depends.” And sometimes the most elegant solution is to combine the access control models. Topaz is an open-source project that lets you do just that.

				Authorization is hard, but we are here to help! If you have any questions about implementing fine-grained access controls, we are here to help. Join us on Slack, or schedule a time to speak with an engineer here.

			

		

		
			
				[image:]
			

		
		
			
				18

			

		

	OEBPS/image/11.png
®0®00

OEBPS/image/142.png

OEBPS/image/9.png
allowed

input.user.department ==

Role: Viewer - 1 -
| Department: HR » Authorization Engine

Role: Viewer
Department: Sales

L »

N
© ®

Permitted Denied

OEBPS/image/125.png

OEBPS/image/38.png

OEBPS/image/151.png

OEBPS/image/8.png

OEBPS/image/36.png

OEBPS/image/10.png

OEBPS/image/7.png

OEBPS/image/45.png

OEBPS/image/60.png

OEBPS/image/Logo.png
(“ Aserto

OEBPS/image/153.png

OEBPS/image/14.png

OEBPS/image/106.png

OEBPS/image/6.png

OEBPS/image/Left.jpg

OEBPS/image/Contents.png

OEBPS/image/91.png

OEBPS/image/122.png

OEBPS/image/Cover.png
(“ Aserto

OEBPS/image/12.png

OEBPS/image/Right.jpg

OEBPS/image/13.png
e relation:admin o
Subject Object

OEBPS/image/69.png

OEBPS/image/5.png
Sysadmin [
Read/Write
Update/Delete

Auditor [

View

Tenant Admin [
Read/Write
Update/Delete

Tenant 1

Tenant 2

Tenant 3

OEBPS/image/16.png
@ 0 @

OEBPS/image/Contents_BG.png

OEBPS/image/112.png

OEBPS/toc.xhtml

		
			
			

		
		
		PageList

			
						1

						2

						1

						2

						3

						4

						5

						6

						7

						8

						9

						10

						11

						12

						13

						14

						15

						16

						17

						18

			

		
		
		Landmarks

			
						Cover

			

		
	

OEBPS/image/Logo1.png
(“ Aserto

OEBPS/image/147.png

OEBPS/image/4.png
Authorization Engine

Permitted

Denied

OEBPS/image/111.png
® ® @

OEBPS/image/1111.png

OEBPS/image/32.png

OEBPS/image/3.png

OEBPS/image/15.png

OEBPS/image/115.png

OEBPS/image/81.png

OEBPS/image/2.png

OEBPS/image/18.png

OEBPS/image/1.png
(“ Aserto

Fine-grained Authorization:
Concepts and Best Practices

OEBPS/image/17.png

